Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Plant Physiol ; 295: 154203, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428153

RESUMO

Root growth and development need proper carbon partitioning between sources and sinks. Photosynthesis products are unloaded from the phloem and enter the root meristem cell by cell. While sugar transporters play a major role in phloem loading, phloem unloading occurs via the plasmodesmata in growing root tips. The aperture and permeability of plasmodesmata strongly influence symplastic unloading. Recent research has dissected the symplastic path for phloem unloading and identified several genes that regulate phloem unloading in the root. Callose turnover and membrane lipid composition alter the shape of plasmodesmata, allowing fine-tuning to adapt phloem unloading to the environmental and developmental conditions. Unloaded sugars act both as an energy supply and as signals to coordinate root growth and development. Increased knowledge of how phloem unloading is regulated enhances our understanding of carbon allocation in plants. In the future, it may be possible to modulate carbon allocation between sources and sinks in a manner that would contribute to increased plant biomass and carbon fixation.


Assuntos
Floema , Plantas , Floema/metabolismo , Plantas/metabolismo , Transporte Biológico , Meristema , Carbono/metabolismo
2.
Curr Biol ; 34(3): R100-R101, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38320472

RESUMO

Age-dependent control of the miR165-regulated SPL transcription factor circuitry is responsible for the variation in leaf morphology over time. A new study reveals the underlying morphogenetic dynamics.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , MicroRNAs , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Folhas de Planta , Biologia
5.
Physiol Plant ; 175(6): e14068, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148248

RESUMO

AIMS: Recent advancements in single-cell transcriptomics have facilitated the possibility of acquiring vast amounts of data at single-cell resolution. This development has provided a broader and more comprehensive understanding of complex biological processes. The growing datasets require a visualization tool that transforms complex data into an intuitive representation. To address this challenge, we have utilized an open-source 3D software Blender to design Cella, a cell atlas visualization tool, which transforms data into 3D heatmaps that can be rendered into image libraries. Our tool is designed to support especially research on plant development. DATA RESOURCES GENERATED: To validate our method, we have created a 3D model representing the Arabidopsis thaliana root meristem and mapped an existing single-cell RNA-seq dataset into the 3D model. This provided a user-friendly visual representation of the expression profiles of 21,489 genes from two perspectives (42,978 images). UTILITY OF THE RESOURCE: This approach is not limited to single-cell RNA-seq data of the Arabidopsis root meristem. We provide detailed step-by-step instructions to generate 3D models and a script that can be customized to project data onto different tissues. KEY RESULTS: Our tool provides a proof-of-concept method for how increasingly complex single-cell RNA-seq datasets can be visualized in a simple and cohesive manner.


Assuntos
Visualização de Dados , Software , Perfilação da Expressão Gênica , Meristema/genética
6.
Dev Cell ; 58(22): 2413-2415, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37989080
7.
Curr Biol ; 33(22): R1172-R1173, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37989089

RESUMO

Interview with Ykä Helariutta, who studies vascular development and wood formation at the University of Helsinki.

8.
Proc Natl Acad Sci U S A ; 120(48): e2308587120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37991945

RESUMO

Due to their long lifespan, trees and bushes develop higher order of branches in a perennial manner. In contrast to a tall tree, with a clearly defined main stem and branching order, a bush is shorter and has a less apparent main stem and branching pattern. To address the developmental basis of these two forms, we studied several naturally occurring architectural variants in silver birch (Betula pendula). Using a candidate gene approach, we identified a bushy kanttarelli variant with a loss-of-function mutation in the BpMAX1 gene required for strigolactone (SL) biosynthesis. While kanttarelli is shorter than the wild type (WT), it has the same number of primary branches, whereas the number of secondary branches is increased, contributing to its bush-like phenotype. To confirm that the identified mutation was responsible for the phenotype, we phenocopied kanttarelli in transgenic BpMAX1::RNAi birch lines. SL profiling confirmed that both kanttarelli and the transgenic lines produced very limited amounts of SL. Interestingly, the auxin (IAA) distribution along the main stem differed between WT and BpMAX1::RNAi. In the WT, the auxin concentration formed a gradient, being higher in the uppermost internodes and decreasing toward the basal part of the stem, whereas in the transgenic line, this gradient was not observed. Through modeling, we showed that the different IAA distribution patterns may result from the difference in the number of higher-order branches and plant height. Future studies will determine whether the IAA gradient itself regulates aspects of plant architecture.


Assuntos
Ácidos Indolacéticos , Reguladores de Crescimento de Plantas , Árvores , Lactonas , Regulação da Expressão Gênica de Plantas
9.
Nat Plants ; 9(9): 1530-1546, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37666966

RESUMO

Plant biomass plays an increasingly important role in the circular bioeconomy, replacing non-renewable fossil resources. Genetic engineering of this lignocellulosic biomass could benefit biorefinery transformation chains by lowering economic and technological barriers to industrial processing. However, previous efforts have mostly targeted the major constituents of woody biomass: cellulose, hemicellulose and lignin. Here we report the engineering of wood structure through the introduction of callose, a polysaccharide novel to most secondary cell walls. Our multiscale analysis of genetically engineered poplar trees shows that callose deposition modulates cell wall porosity, water and lignin contents and increases the lignin-cellulose distance, ultimately resulting in substantially decreased biomass recalcitrance. We provide a model of the wood cell wall nano-architecture engineered to accommodate the hydrated callose inclusions. Ectopic polymer introduction into biomass manifests in new physico-chemical properties and offers new avenues when considering lignocellulose engineering.


Assuntos
Lignina , Madeira , Biomassa , Celulose
10.
Development ; 150(19)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37724502

RESUMO

N6-methyl adenosine (m6A) is a widespread internal mRNA modification impacting the expression of numerous genes. Here, we characterize auxin-related defects among the pleiotropic phenotypes of hypomorphic Arabidopsis thaliana mutants with impaired m6A status and reveal that they show strong resistance to exogenously applied auxin. By combining major published m6A datasets, we propose that among high-confidence target transcripts emerge those encoding the main components required for auxin signaling, including the TIR1/AFB auxin receptors and ARF transcriptional regulators. We also observe subtle changes in endogenous levels of indole-3-acetic acid metabolites in these hypomorphic lines, which correlate with the methylation status of indole-3-acetic acid amidohydrolase transcripts. In addition, we reveal that reduced m6A levels lead to defects in endodermal patterning in the primary root arising from impaired timing of periclinal cell divisions. These defects can be reverted by inhibition of auxin signaling. Together, our data underline that m6A likely affects auxin-dependent processes at multiple levels.

11.
Curr Biol ; 33(5): 926-939.e9, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36805125

RESUMO

In plants, the phloem distributes photosynthetic products for metabolism and storage over long distances. It relies on specialized cells, the sieve elements, which are enucleated and interconnected through large so-called sieve pores in their adjoining cell walls. Reverse genetics identified PECTATE LYASE-LIKE 12 (PLL12) as critical for plant growth and development. Using genetic complementations, we established that PLL12 is required exclusively late during sieve element differentiation. Structural homology modeling, enzyme inactivation, and overexpression suggest a vital role for PLL12 in sieve-element-specific pectin remodeling. While short distance symplastic diffusion is unaffected, the pll12 mutant is unable to accommodate sustained plant development due to an incapacity to accommodate increasing hydraulic demands on phloem long-distance transport as the plant grows-a defect that is aggravated when combined with another sieve-element-specific mutant callose synthase 7 (cals7). Establishing CALS7 as a specific sieve pore marker, we investigated the subcellular dynamics of callose deposition in the developing sieve plate. Using fluorescent CALS7 then allowed identifying structural defects in pll12 sieve pores that are moderate at the cellular level but become physiologically relevant due to the serial arrangement of sieve elements in the sieve tube. Overall, pectin degradation through PLL12 appears subtle in quantitative terms. We therefore speculate that PLL12 may act as a regulator to locally remove homogalacturonan, thus potentially enabling further extracellular enzymes to access and modify the cell wall during sieve pore maturation.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Floema/metabolismo , Glucanos/metabolismo , Plantas/metabolismo
12.
Nat Plants ; 9(1): 7-8, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36624256
14.
Nat Plants ; 8(8): 954-970, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35927456

RESUMO

Single-cell sequencing has recently allowed the generation of exhaustive root cell atlases. However, some cell types are elusive and remain underrepresented. Here we use a second-generation single-cell approach, where we zoom in on the root transcriptome sorting with specific markers to profile the phloem poles at an unprecedented resolution. Our data highlight the similarities among the developmental trajectories and gene regulatory networks common to protophloem sieve element (PSE)-adjacent lineages in relation to PSE enucleation, a key event in phloem biology. As a signature for early PSE-adjacent lineages, we have identified a set of DNA-binding with one finger (DOF) transcription factors, the PINEAPPLEs (PAPL), that act downstream of PHLOEM EARLY DOF (PEAR) genes and are important to guarantee a proper root nutrition in the transition to autotrophy. Our data provide a holistic view of the phloem poles that act as a functional unit in root development.


Assuntos
Arabidopsis , Floema , Arabidopsis/genética , Diferenciação Celular , Redes Reguladoras de Genes , Floema/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
iScience ; 25(7): 104683, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35856019

RESUMO

Coordinating growth and patterning is essential for eukaryote morphogenesis. In plants, auxin is a key regulator of morphogenesis implicated throughout development. Despite this central role, our understanding of how auxin coordinates cell fate and growth changes is still limited. Here, we addressed this question using a combination of genomic screens to delve into the transcriptional network induced by auxin at the earliest stage of flower development, prior to morphological changes. We identify a shoot-specific network suggesting that auxin initiates growth through an antagonistic regulation of growth-promoting and growth-repressive hormones, quasi-synchronously to floral fate specification. We further identify two DNA-binding One Zinc Finger (DOF) transcription factors acting in an auxin-dependent network that could interface growth and cell fate from the early stages of flower development onward.

18.
Commun Biol ; 3(1): 184, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32322004

RESUMO

The phloem transports photosynthetic assimilates and signalling molecules. It mainly consists of sieve elements (SEs), which act as "highways" for transport, and companion cells (CCs), which serve as "gates" to load/unload cargos. Though SEs and CCs function together, it remains unknown what determines the ratio of SE/CC in the phloem. Here we develop a new culture system for CC differentiation in Arabidopsis named VISUAL-CC, which almost mimics the process of the SE-CC complex formation. Comparative expression analysis in VISUAL-CC reveals that SE and CC differentiation tends to show negative correlation, while total phloem differentiation is unchanged. This varying SE/CC ratio is largely dependent on GSK3 kinase activity. Indeed, gsk3 hextuple mutants possess many more SEs and fewer CCs, whereas gsk3 gain-of-function mutants partially increase the CC number. Taken together, GSK3 activity appears to function as a cell-fate switch in the phloem, thereby balancing the SE/CC ratio.


Assuntos
Arabidopsis/enzimologia , Diferenciação Celular , Quinase 3 da Glicogênio Sintase/metabolismo , Floema/enzimologia , Plantas Geneticamente Modificadas/enzimologia , Arabidopsis/citologia , Arabidopsis/genética , Técnicas de Cultura de Células , Células Cultivadas , Regulação da Expressão Gênica de Plantas , Quinase 3 da Glicogênio Sintase/genética , Mutação , Floema/citologia , Floema/genética , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/genética , Transdução de Sinais
19.
Plant Cell ; 32(5): 1519-1535, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32111671

RESUMO

Asymmetric cell division (ACD) and positional signals play critical roles in the tissue patterning process. In the Arabidopsis (Arabidopsis thaliana) root meristem, two major phloem cell types arise via ACDs of distinct origins: one for companion cells (CCs) and the other for proto- and metaphloem sieve elements (SEs). The molecular mechanisms underlying each of these processes have been reported; however, how these are coordinated has remained elusive. Here, we report a new phloem development process coordinated via the SHORTROOT (SHR) transcription factor in Arabidopsis. The movement of SHR into the endodermis regulates the ACD for CC formation by activating microRNA165/6, while SHR moving into the phloem regulates the ACD generating the two phloem SEs. In the phloem, SHR sequentially activates NAC-REGULATED SEED MORPHOLOGY 1 (NARS1) and SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN 2 (SND2), and these three together form a positive feedforward loop. Under this regulatory scheme, NARS1, generated in the CCs of the root differentiation zone, establishes a top-down signal that drives the ACD for phloem SEs in the meristem. SND2 appears to function downstream to amplify NARS1 via positive feedback. This new regulatory mechanism expands our understanding of the sophisticated vascular tissue patterning processes occurring during postembryonic root development.plantcell;32/5/1519/FX1F1fx1.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Floema/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Transdução de Sinais , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Divisão Celular Assimétrica , Diferenciação Celular , Regulação da Expressão Gênica de Plantas , Genoma de Planta , MicroRNAs/genética , MicroRNAs/metabolismo , Floema/citologia , Floema/genética , Raízes de Plantas/citologia , Raízes de Plantas/genética , Fatores de Transcrição/genética
20.
Curr Biol ; 30(4): 589-599.e5, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32004453

RESUMO

Tree architecture has evolved to support a top-heavy above-ground biomass, but this integral feature poses a weight-induced challenge to trunk stability. Maintaining an upright stem is expected to require vertical proprioception through feedback between sensing stem weight and responding with radial growth. Despite its apparent importance, the principle by which plant stems respond to vertical loading forces remains largely unknown. Here, by manipulating the stem weight of downy birch (Betula pubescens) trees, we show that cambial development is modulated systemically along the stem. We carried out a genetic study on the underlying regulation by combining an accelerated birch flowering program with a recessive mutation at the ELIMÄKI locus (EKI), which causes a mechanically defective response to weight stimulus resulting in stem collapse after just 3 months. We observed delayed wood morphogenesis in eki compared with WT, along with a more mechanically elastic cambial zone and radial compression of xylem cell size, indicating that rapid tissue differentiation is critical for cambial growth under mechanical stress. Furthermore, the touch-induced mechanosensory pathway was transcriptionally misregulated in eki, indicating that the ELIMÄKI locus is required to integrate the weight-growth feedback regulation. By studying this birch mutant, we were able to dissect vertical proprioception from the gravitropic response associated with reaction wood formation. Our study provides evidence for both local and systemic responses to mechanical stimuli during secondary plant development.


Assuntos
Betula/genética , Câmbio/crescimento & desenvolvimento , Genes de Plantas , Caules de Planta/crescimento & desenvolvimento , Betula/crescimento & desenvolvimento , Câmbio/genética , Mutação , Caules de Planta/genética , Propriocepção/genética , Árvores/genética , Árvores/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...